Factorise quadratics with other leading coefficients

  • A quadratic equation is in the form ax² + bx + c, where a ≠ 1 (i.e., the coefficient of x² is not 1).
  • The goal of factorization is to express the quadratic as a product of two binomials.
  • Step 1: Multiply a and c (the coefficient of x² and the constant term).
  • Step 2: Find two numbers that multiply to a × c and add to b (the coefficient of x).
  • Step 3: Rewrite the middle term using the two numbers found.
  • Step 4: Group the terms in pairs.
  • Step 5: Factor out the common term from each group.
  • Step 6: Write the final factorized form.

Example 1: Factorize 2x² + 7x + 3

  • Multiply a × c: 2 × 3 = 6
  • Find two numbers that multiply to 6 and add to 76 and 1
  • Rewrite: 2x² + 6x + 1x + 3
  • Group: (2x² + 6x) + (1x + 3)
  • Factor out common terms: 2x(x + 3) + 1(x + 3)
  • Final factorized form: (2x + 1)(x + 3)

Example 2: Factorize 3x² – 8x – 3

  • Multiply a × c: 3 × (-3) = -9
  • Find two numbers that multiply to -9 and add to -8-9 and 1
  • Rewrite: 3x² – 9x + 1x – 3
  • Group: (3x² – 9x) + (1x – 3)
  • Factor out common terms: 3x(x – 3) + 1(x – 3)
  • Final factorized form: (3x + 1)(x – 3)
  • Perfect Square Quadratics: If the quadratic is of the form a²x² + 2abx + b², it factors as (ax + b)².
  • Difference of Squares: If the quadratic is a²x² – b², it factors as (ax – b)(ax + b).
  • Expand the factorized expression to verify if it equals the original quadratic.
  • If incorrect, revisit the factor pairs and adjust the grouping.

To factorise a quadratic of the form ax2+bx+c, write it as

ax2+r1x+r2x+c

where a . c=r1 . r2 and b=r1+r2. Then factor by grouping.

Learn with an example

2f2+13f+11=——

Look at the given quadratic:

2f2+13f+11

The product ac is 22, so you need to find a pair of factors with a product of 22. The b term is 13, so you need to find a pair of factors with a sum of 13. Since the product is positive (22) and the sum is positive (13), you need both factors to be positive.

Make a list of the possible factor pairs with a product of 22, and then find the one with a sum of 13.

Factor pairs of ac=22Sum of factor pairs
1 . 22=221+22=23
2 . 11=222+11=13

The factors 2 and 11 have a sum of 13. So, replace the quadratic’s 13f term with 2f and 11f, and then factor by grouping.

2f2+13f+11

2f2+2f+11f+11

2f(f+1)+11(f+1) Factor by grouping; the expressions in brackets should match

(2f+11)(f+1)

Finally, check your work.

(2f+11)(f+1)

2f2+11f+2f+11 Apply the distributive property (FOIL)

2f2+13f+11

Yes, 2f2+13f+11=(2f+11)(f+1).

2m2+13m+11=——

Look at the given quadratic:

2m2+13m+11

The product ac is 22, so you need to find a pair of factors with a product of 22. The b term is 13, so you need to find a pair of factors with a sum of 13. Since the product is positive (22) and the sum is positive (13), you need both factors to be positive.

Make a list of the possible factor pairs with a product of 22, and then find the one with a sum of 13.

Factor pairs of ac=22Sum of factor pairs
1 . 22=221+22=23
2 . 11=222+11=13

The factors 2 and 11 have a sum of 13. So, replace the quadratic’s 13m term with 2m and 11m, and then factor by grouping.

2m2+13m+11

2m2+2m+11m+11

2m(m+1)+11(m+1) Factor by grouping; the expressions in brackets should match

(2m+11)(m+1)

Finally, check your work.

(2m+11)(m+1)

2m2+11m+2m+11 Apply the distributive property (FOIL)

2m2+13m+11

Yes, 2m2+13m+11=(2m+11)(m+1).

2u2+9u+10=——

Look at the given quadratic:

2u2+9u+10

The product ac is 20, so you need to find a pair of factors with a product of 20. The b term is 9, so you need to find a pair of factors with a sum of 9. Since the product is positive (20) and the sum is positive (9), you need both factors to be positive.

Make a list of the possible factor pairs with a product of 20, and then find the one with a sum of 9.

Factor pairs of ac=20Sum of factor pairs
1 . 20=201+20=21
2 . 10=202+10=12
4 . 5=204+5=9

The factors 4 and 5 have a sum of 9. So, replace the quadratic’s 9u term with 4u and 5u, and then factor by grouping.

2u2+9u+10

2u2+4u+5u+10

2u(u+2)+5(u+2)

Factor by grouping; the expressions in brackets should match

(2u+5)(u+2)

Finally, check your work.

(2u+5)(u+2)

2u2+5u+4u+10

Apply the distributive property (FOIL)

2u2+9u+10

Yes, 2u2+9u+10=(2u+5)(u+2).

let’s practice!