Factorise quadratics with leading coefficient1

  • A quadratic expression is in the form: x² + bx + c, where the leading coefficient (coefficient of x²) is 1.
  • Factorising means writing the quadratic expression as a product of two binomials.
  • Example: x² + 5x + 6 = (x + 2)(x + 3).

Identify two numbers that:

  • Multiply to give c (the constant term).
  • Add to give b (the coefficient of x).
  • Example: In x² + 7x + 12, find two numbers that multiply to 12 and add to 7 → (3 and 4).
  • Once the numbers are found, express the quadratic as:
  • x² + bx + c = (x + p)(x + q)
  • Example: x² + 7x + 12 = (x + 3)(x + 4).

Expand the binomials to verify:

  • (x + 3)(x + 4) = x² + 4x + 3x + 12 = x² + 7x + 12 ✔

Perfect Square Quadratics: Example:

  • x² + 6x + 9 = (x + 3)(x + 3) = (x + 3)²

Difference of Squares: Example:

  • x² – 9 = (x + 3)(x – 3).

To factorise a quadratic of the form ax2 + bx + c, write it as(x + r1) (x + r2)

where c = r1 . r2 and b = r1 + r2.

Learn with an example

s2+5s+4=—–

Look at the given quadratic:

s2+5s+4

The c term is 4, so you need to find a pair of factors with a product of 4. The b term is 5, so you need to find a pair of factors with a sum of 5. Since the product is positive (4) and the sum is positive (5), you need both factors to be positive.

Make a list of the possible factor pairs with a product of 4, and then find the one with a sum of 5.

Factor pairs of c=4Sum of factor pairs
1 . 4=41+4=5
2 . 2=42+2=4

The factors 1 and 4 have a sum of 5. Use those numbers to factorise s2+5s+4.

s2+5s+4

(s+1)(s+4)

Finally, check your work.

(s+1)(s+4)

s2+s+4s+4Apply the distributive property (FOIL)

s2+5s+4

Yes, s2+5s+4=(s+1)(s+4).

f2+6f+8=—–

Look at the given quadratic:

f2+6f+8

The c term is 8, so you need to find a pair of factors with a product of 8. The b term is 6, so you need to find a pair of factors with a sum of 6. Since the product is positive (8) and the sum is positive (6), you need both factors to be positive.

Make a list of the possible factor pairs with a product of 8, and then find the one with a sum of 6.

Factor pairs of c=8Sum of factor pairs
1 . 8=81+8=9
2 . 4=82+4=6

The factors 2 and 4 have a sum of 6. Use those numbers to factorise f2+6f+8.

f2+6f+8

(f+2)(f+4)

Finally, check your work.

(f+2)(f+4)

f2+2f+4f+8Apply the distributive property (FOIL)

f2+6f+8

Yes, f2+6f+8=(f+2)(f+4).

x2+10x+9=——

Look at the given quadratic:

x2+10x+9

The c term is 9, so you need to find a pair of factors with a product of 9. The b term is 10, so you need to find a pair of factors with a sum of 10. Since the product is positive (9) and the sum is positive (10), you need both factors to be positive.

Make a list of the possible factor pairs with a product of 9, and then find the one with a sum of 10.

Factor pairs of c=9Sum of factor pairs
1 . 9=91+9=10
3 . 3=93+3=6

The factors 1 and 9 have a sum of 10. Use those numbers to factorise x2+10x+9.

x2+10x+9

(x+1)(x+9)

Finally, check your work.

(x+1)(x+9)

x2+x+9x+9 Apply the distributive property (FOIL)

x2+10x+9

Yes, x2+10x+9=(x+1)(x+9).

let’s practice!