πŸ‘‰ An exponent tells how many times a number (called the base) is multiplied by itself.

Example:

  • 24=2Γ—2Γ—2Γ—2=16

Base: The number that is multiplied.

  • πŸ‘‰ In 53, base = 5

Exponent (Power): The number of times the base is used as a factor.

  • πŸ‘‰ In 53, exponent = 3

Expression: A mathematical phrase with numbers, variables, and exponents.

  • πŸ‘‰ Example: 3x2.x3

1️⃣ Product of Powers Property

  • When multiplying with the same base, add the exponents.
  • πŸ‘‰ amΓ—an=am+n
  • πŸ“˜ Example: 23Γ—24=23+4=27=128

2️⃣ Quotient of Powers Property

  • When dividing with the same base, subtract the exponents.
  • πŸ‘‰ amΓ·an=amβˆ’n
  • πŸ“˜ Example: 56Γ·52=56βˆ’2=54=625

3️⃣ Power of a Power Property

  • When a power is raised to another power, multiply the exponents.
  • πŸ‘‰ (am)n=amΓ—n
  • πŸ“˜ Example: (32)4=38=6561

4️⃣ Power of a Product Property

  • Distribute the exponent to each factor inside the parentheses.
  • πŸ‘‰ (ab)m=amΓ—bm
  • πŸ“˜ Example: (2x)3=23Γ—x3=8×3

5️⃣ Power of a Quotient Property

  • Apply the exponent to both numerator and denominator.
  • πŸ‘‰ (a/b)m=am/bm
  • πŸ“˜ Example: (3/2)2=32/22=9/4

6️⃣ Zero Exponent Rule

  • Any nonzero number raised to the power of 0 is 1.
  • πŸ‘‰ a0=1
  • πŸ“˜ Example: 90=1

7️⃣ Negative Exponent Rule

  • A negative exponent means take the reciprocal of the base.
  • πŸ‘‰ aβˆ’m=1/am
  • πŸ“˜ Example: 2βˆ’3=1/23=1/8

1️⃣ Identify the base and exponent(s).

2️⃣ Apply the rules of exponents (add, subtract, multiply).

3️⃣ Simplify numerical values.

4️⃣ If variables are present, simplify their powers using the same base rule.

  1. 32Γ—34=36=729
  2. (x3)2=x6
  3. y8/y3=y5
  4. (2a2b)3=23a6b3=8a6b3

✨ Always check if the bases are the same before applying rules.

✨ Simplify step by step to avoid mistakes.

✨ Remember: These rules work only when bases are identical!

Learn with an example

Let’s practice!