Put rational numbers in order

What are Rational Numbers? πŸ€”

Rational numbers are numbers that can be written as fractions p/q, where p and q are integers and q β‰  0.

They include:

  • Positive numbers βž•
  • Negative numbers βž–
  • Zero 0️⃣

Examples: 3/4, -2/5, 0, 7


Steps to Arrange Rational Numbers in Order πŸ”’

Step 1: Convert to Same Form (Fractions or Decimals) πŸ”„

Convert all numbers to decimals or fractions with the same denominator.

Example: Arrange 1/2, -3/4, 2/3

  • Convert to decimals: 1/2 = 0.5, -3/4 = -0.75, 2/3 β‰ˆ 0.667

Step 2: Compare the Numbers πŸ‘€

  • For positive numbers ➑ bigger decimal/fraction = bigger number
  • For negative numbers ➑ bigger decimal (less negative) = bigger number
  • Example: -0.75 < 0.5 < 0.667

Step 3: Arrange in Order ⬆️ or ⬇️

  • Ascending Order (Smallest to Largest): -0.75, 0.5, 0.667
  • Descending Order (Largest to Smallest): 0.667, 0.5, -0.75

Tips & Tricks πŸ’‘

Always watch the signs!

  • Negative numbers are smaller than zero. ❌0️⃣

Use a number line πŸ“

  • Helps visualize which number is bigger or smaller.

Convert fractions first if denominators are different:

  • Example: 1/3, 2/5 β†’ common denominator 15 β†’ 5/15, 6/15
  • Compare numerators: 5 < 6 β†’ 1/3 < 2/5

Decimals make comparison easier:

  • -3/4 β‰ˆ -0.75
  • 2/3 β‰ˆ 0.667

Example Problem πŸ“

Arrange in ascending order:
-1/2, 3/4, -2/3, 1/3

Step 1: Convert to decimals

  • -1/2 = -0.5
  • 3/4 = 0.75
  • -2/3 β‰ˆ -0.667
  • 1/3 β‰ˆ 0.333

Step 2: Compare

  • Smallest β†’ -0.667
  • Then β†’ -0.5
  • Then β†’ 0.333
  • Largest β†’ 0.75

βœ… Answer (Ascending Order): -2/3, -1/2, 1/3, 3/4


Quick Reminder Chart πŸ—‚οΈ

SignOrder Rule
Positive βž•Bigger value β†’ bigger number
Negative βž–More negative β†’ smaller number
Zero 0️⃣In between negative and positive

Let’s practice!πŸ–ŠοΈ