Evaluate numerical expressions involving integers

  • Integers are whole numbers and their negatives.
  • Examples: …, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5 …

  • A numerical expression is a combination of numbers and mathematical operations ( +, −, ×, ÷, brackets, exponents).
  • Example: 3+(−5)×2

To evaluate expressions correctly, follow BODMAS:

  • B → Brackets (first solve inside brackets)
  • O → Orders (powers, squares, roots, etc.)
  • D → Division
  • M → Multiplication
  • A → Addition
  • S → Subtraction

Addition

  • (+) + (+) = +
  • (−) + (−) = −
  • (−) + (+) → subtract and keep the sign of bigger number

Subtraction

  • a−b=a+(−b)

Multiplication & Division

  • (+) × (+) = +
  • (−) × (−) = +
  • (+) × (−) = −
  • (−) × (+) = −

Example 1:

Evaluate: 5+(−3)

  • 👉 5−3=2

Example 2:

Evaluate: (−6)−(−8)

  • 👉 −6+8=2

Example 3:

Evaluate: (−4)×(−7)

  • 👉 +28

Example 4:

Evaluate: 12÷(−3)

  • 👉 −4

Example 5:

Evaluate: [3+(−2)]×(−4)

  • 👉 Inside bracket: 3−2=1
  • 👉 Multiply: 1×(−4)=−4

Example 6:

Evaluate: (−2)2+(−3)3

  • 👉 (−2)2=4
  • 👉 (−3)3=−27
  • 👉 4+(−27)=−23

  • Always apply BODMAS when more than one operation is involved.
  • Be careful with signs while adding, subtracting, multiplying, and dividing.
  • Use brackets to simplify step by step.
  • Negative × Negative = Positive; Positive × Negative = Negative.

  1. Evaluate: (−5)+(−8)+12
  2. Evaluate: 15−(−9)
  3. Evaluate: (−7)×(−6)÷(−2)
  4. Evaluate: [10−(−5)]×(−3)
  5. Evaluate: (−4)3+(2)2

Learn with Example

First, identify the operations in the expression.

2+4÷2 This expression has addition and division.

The order of operations says to divide before adding.

2+4÷2=2+2

Now, add 2+2=4.

The value of the expression is 4.

Solution :

= (y2 + x) ÷ x

Substitute x = 5, y = 8 and z = 6.

= (82 + 6) ÷ 5

= (64 + 6) ÷ 5

= 70 ÷ 5

= 14

Solution :

(PQ – 28)2 ÷ r

Substitute P = 6, Q = 5 and r = 4.

= [(6)(5) – 28]2 ÷ 4

= (30 – 28)2 ÷ 4

= 22 ÷ 4

= 4 ÷ 4

= 1

Let’s practice!🖊️